Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

FAC(s(x), y) → TIMES(s(x), y)
FAC(s(x), y) → P(s(x))
TIMES(s(x), y) → P(s(x))
TIMES(s(x), y) → PLUS(y, times(p(s(x)), y))
FAC(s(x), y) → FAC(p(s(x)), times(s(x), y))
P(s(s(x))) → P(s(x))
PLUS(s(x), y) → PLUS(p(s(x)), y)
FACTORIAL(x) → FAC(x, s(0))
PLUS(s(x), y) → P(s(x))
TIMES(s(x), y) → TIMES(p(s(x)), y)

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x), y) → TIMES(s(x), y)
FAC(s(x), y) → P(s(x))
TIMES(s(x), y) → P(s(x))
TIMES(s(x), y) → PLUS(y, times(p(s(x)), y))
FAC(s(x), y) → FAC(p(s(x)), times(s(x), y))
P(s(s(x))) → P(s(x))
PLUS(s(x), y) → PLUS(p(s(x)), y)
FACTORIAL(x) → FAC(x, s(0))
PLUS(s(x), y) → P(s(x))
TIMES(s(x), y) → TIMES(p(s(x)), y)

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 6 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

P(s(s(x))) → P(s(x))

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

P(s(s(x))) → P(s(x))

R is empty.
The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

P(s(s(x))) → P(s(x))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), y) → PLUS(p(s(x)), y)

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), y) → PLUS(p(s(x)), y)

The TRS R consists of the following rules:

p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
fac(0, x0)
fac(s(x0), x1)
factorial(x0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ RuleRemovalProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), y) → PLUS(p(s(x)), y)

The TRS R consists of the following rules:

p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

p(s(0)) → 0

Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 1   
POL(PLUS(x1, x2)) = x1 + x2   
POL(p(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), y) → PLUS(p(s(x)), y)

The TRS R consists of the following rules:

p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


PLUS(s(x), y) → PLUS(p(s(x)), y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( p(x1) ) =
/1\
\0/
+
/11\
\10/
·x1

M( s(x1) ) =
/0\
\1/
+
/01\
\01/
·x1

Tuple symbols:
M( PLUS(x1, x2) ) = 0+
[0,1]
·x1+
[0,0]
·x2


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

p(s(s(x))) → s(p(s(x)))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TIMES(s(x), y) → TIMES(p(s(x)), y)

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TIMES(s(x), y) → TIMES(p(s(x)), y)

The TRS R consists of the following rules:

p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
fac(0, x0)
fac(s(x0), x1)
factorial(x0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ RuleRemovalProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TIMES(s(x), y) → TIMES(p(s(x)), y)

The TRS R consists of the following rules:

p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

p(s(0)) → 0

Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 1   
POL(TIMES(x1, x2)) = x1 + x2   
POL(p(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TIMES(s(x), y) → TIMES(p(s(x)), y)

The TRS R consists of the following rules:

p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TIMES(s(x), y) → TIMES(p(s(x)), y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( p(x1) ) =
/1\
\0/
+
/11\
\10/
·x1

M( s(x1) ) =
/0\
\1/
+
/01\
\01/
·x1

Tuple symbols:
M( TIMES(x1, x2) ) = 0+
[0,1]
·x1+
[0,0]
·x2


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

p(s(s(x))) → s(p(s(x)))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x), y) → FAC(p(s(x)), times(s(x), y))

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x), y) → FAC(p(s(x)), times(s(x), y))

The TRS R consists of the following rules:

p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
times(s(x), y) → plus(y, times(p(s(x)), y))
times(0, y) → 0
plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

fac(0, x0)
fac(s(x0), x1)
factorial(x0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x), y) → FAC(p(s(x)), times(s(x), y))

The TRS R consists of the following rules:

p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
times(s(x), y) → plus(y, times(p(s(x)), y))
times(0, y) → 0
plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule FAC(s(x), y) → FAC(p(s(x)), times(s(x), y)) at position [1] we obtained the following new rules:

FAC(s(x), y) → FAC(p(s(x)), plus(y, times(p(s(x)), y)))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
QDP
                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x), y) → FAC(p(s(x)), plus(y, times(p(s(x)), y)))

The TRS R consists of the following rules:

p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
times(s(x), y) → plus(y, times(p(s(x)), y))
times(0, y) → 0
plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


FAC(s(x), y) → FAC(p(s(x)), plus(y, times(p(s(x)), y)))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( plus(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( times(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( s(x1) ) =
/1\
\0/
+
/10\
\10/
·x1

M( p(x1) ) =
/0\
\1/
+
/01\
\10/
·x1

M( 0 ) =
/0\
\0/

Tuple symbols:
M( FAC(x1, x2) ) = 0+
[1,0]
·x1+
[0,0]
·x2


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
times(s(x), y) → plus(y, times(p(s(x)), y))
times(0, y) → 0
plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.